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Abstract
The various series, definitions such as nilpotency and solubility of groups and all kinds of automorphisms have been the

idea of many researchers’ articles. In this paper, we first study autonilpotent group and their generalizations. Then we give a
new definition for nS(G)-autonilpotency and discuss some properties of this concept.
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1. Introduction

Let G be a group. Let us denote by Z(G), G ′, and Aut(G), respectively, the centre, the commutator
subgroup and the full automorphism group. Let H ⩽ G, then

CAut(G)(H) = {α ∈ Aut(G) | α(h) = h, ∀ h ∈ H}.

Bachmuth [1] in 1965 defined an IA-automorphism of a group G as

IA(G) =
{
α ∈ Aut(G)

∣∣ g−1α(g) = [g,α] ∈ G ′, ∀ g ∈ G
}

.

Hegarty [4] in 1994 introduced the absolute center

L(G) =
{
g ∈ G

∣∣ g−1α(g) = 1, ∀ α ∈ Aut(G)
}

.

On the similar lines, Ghumde and Ghate [3] in 2015 introduced the IA-central subgroup

S(G) =
{
g ∈ G | g−1α(g) = 1, α ∈ IA(G)

}
.

For any group G, L(G)⊴ S(G)⊴Z(G).
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2. Main results

Parvaneh and Moghaddam [7] in 2010 introduced the concept of autonilpotent groups. They defined the
upper autocentral series of G as

⟨1⟩ = L0(G) ⊆ L1(G) = L(G) ⊆ L2(G) ⊆ · · · ⊆ Ln(G) ⊆ · · ·

where
Ln(G)

Ln−1(G)
= L

( G

Ln−1(G)

)
, for n ⩾ 2

and Ln(G) is the nth-absolute centre of G. Also, they called a group autonilpotent of class at most c if
Lc(G) = G, for some positive integer c.

For each natural number i and n, we [2] defined

Lni (G) = {g ∈ G | [g,αn
1 ,αn

2 , . . . ,αn
i ] = 1, ∀ α1,α2, . . . ,αi ∈ Aut(G)}.

Also, we called a group G to be an n-autonilpotent group of class at most c if there exists some positive
integer c such that Lnc (G) = G.

Thereafter, we define the IA-central series of G in the following way:

⟨1⟩ = S0(G) ⊆ S1(G) = S(G) ⊆ S2(G) ⊆ · · · ⊆ Si(G) ⊆ · · ·

where
Si(G) = {g ∈ G | [g,α1,α2, . . . ,αi] = 1, ∀ α1,α2, . . . ,αi ∈ IA(G)} , i ⩾ 1.

A group G is called S(G)-autonilpotent(or IA-nilpotent) group of class at most c if Sc(G) = G, for some
positive integer number c.

In this section, we generalize the concept of S(G)-autonilpotency and represent their properties.

2.1. Preliminary Results
Definition 2.1. For each positive integer i and n, we define

Sni (G) = {g ∈ G | [g,αn
1 ,αn

2 , . . . ,αn
i ] = 1, ∀ α1,α2, . . . ,αi ∈ IA(G)} .

Definition 2.2. A group G is called nS(G)-autonilpotent group of class at most c if Snc (G) = G, for some
positive integer c.

Example 2.3. For an abelian group G, we know that IA(G) is trivial, so Sni (G) = G, for every positive
integer i. Therefore, abelian groups are nS(G)-autonilpotent.

Remark 2.4. Clearly, for a group G and every positive integer i, Lni (G) ⩽ Sni (G). Thus, n-autonilpotent
groups are nS(G)-autonilpotent groups, but the converse of this result is not generally valid.
For example, Z3 is nS(G)-autonilpotent, but is not n-autonilpotent.

Proposition 2.5. Let G be any group, then for each g ∈ G we have

g ∈ Sni (G) ⇐⇒ [g,α] ∈ Sn−1
i (G), ∀ α ∈ IA(G).

Proof. Due to Sni (G) definition and by inductive on i, the lemma is proved.

As an immediate consequence of the above proposition, we have the following corollary.
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Corollary 2.6. For each g ∈ G, we have

g ∈ Sni (G) ⇐⇒ [Sn−1
i (G), IA(G)] = 1.

Lemma 2.7. Let G be a non-trivial nS(G)-autonilpotent group, then S(G) ̸= ⟨1⟩.

Proof. By the hypothesis, there exist a positive integer i such that Sni (G) = G. We assume by way of
contradiction that S(G) = ⟨1⟩, then according to Sni (G) definition and by proposition 2.5, Sn2 (G) = ⟨1⟩.
Thus, we have Sni (G) = ⟨1⟩, for every positive integer i, contrary to the assumption. Hence S(G) ̸= ⟨1⟩.

Theorem 2.8. Let G be a group and H1 and H2 be two characteristic subgroups of it. If G is the direct
product of H1 and H2, then for all i ⩾ 1,

Sni (H1 ×H2) = Sni (H1)× Sni (H2).

Proof. The Theorem holds by induction on i.

Corollary 2.9. If H1 and H2 be two finite groups such that (|H1|, |H2|) = 1, then

Sni (H1 ×H2) = Sni (H1)× Sni (H2).

Corollary 2.10. Let G be a group and H1 and H2 be two characteristic subgroups of it. If G is the direct
product of H1 and H2 such that one of them is not nS(G)-autonilpotent, then so is not G.

Corollary 2.11. If G1, G2, . . ., Gk are nS(G)-autonilpotent groups with coprime orders, then so is

G1 ×G2 × · · · ×Gk.

2.2. When Sni (G) ̸= ⟨1⟩?

Now, we study the conditions in which Sni (G) is non-trivial. We saw that for abelian groups Sni (G) = G.
Therefore, in the following, we consider non-abelian groups.

Theorem 2.12. Let G be a group and H ⩽ G, then H ⩽ Sni (G) if one of the following conditions holds:

1) Aut(G) = CAut(G)(H).
2) G be a finite group and H be a characteristic subgroup of prime order p such that p be the smallest

prime divisor of |Aut(G)|.
3) H be a cyclic characteristic subgroup of G and Aut(G) be a perfect group.

Proof. Given that L(G) ⩽ S(G) ⩽ Sni (G), the proof easily follow from [6] lemma 2.4(iv), corollary 3.5 and
3.7, respectively.

Theorem 2.13. Let G be a group, Aut(G) be a finite p-group and H be a finite characteristic subgroup of G
such that p

∣∣|H|, then H∩ Sni (G) ̸= ⟨1⟩.

Proof. Because H is a characteristic subgroup of G, then this equivalence relation yields a partition of H and
each cell in the partition arising from an equivalence relation is an equivalence class. According to lemma
2.5 [6], there is 1 ̸= h0 ∈ H element such that the equivalence class is of order 1. So we have α(h0) = h0,
for every α ∈ Aut(G). Thus 1 ̸= h0 ∈ S(G)∩H and this completes the proof.

Corollary 2.14. If G is a finite group such that Aut(G) is a p-group, then Sni (G) ̸= ⟨1⟩.

Theorem 2.15 (MacHale[5]). Let G be a finite group such that Aut(G) is nilpotent. If G is not cyclic of odd
order, then G contains a non-trivial element which is left fixed by every automorphism of G.

Corollary 2.16. Let G be a finite group such that Aut(G) is nilpotent, then Sni (G) ̸= ⟨1⟩.
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